

	Golden Treads:	Enrichment:		Review and		
	Mathematical augment, language and Proof			Senior Maths Challenge		evaluation:
က္	Mathematical problem solving					June 2024
	Mathematical Modelling					
Year 13	Topics and Substantive Knowledge					
×		Assessment	Misconceptions	Key Vocabulary	Knowledge tracking	
	Decision 1:	Topic tests completed for		Algorithm	Before:	
	Ch 1 & 2 recap – Algorithms and graphs	homework	Confusing upper and lower bounds	Nearest neighbour algorithm	Decision C 3)	h 5 (from Decision Ch
	Ch 3 & 4 recap – Algorithms on graphs		Choosing the smallest number when	Precedence Dummy	Distance to	ables spanning trees – Prim's
	Ch 5 – Travelling salesman		doing a forward pass for the EETs (or vice versa for the LETs).	Early event times	and Kruska	·
	Explain the differences between the classical and practical problems			Late event times		
	Use a minimum spanning tree method to find an upper bound		Not putting floats on a Gantt chart	Critical path	Decision C	h 8 (from Decision Ch
Term 1	Use a minimum spanning tree method to find a lower bound Use the nearest neighbour algorithm to find an upper bound			Float	4)	
Teacher 1	ose the hearest heighbour digoritim to find an apper bound			Gantt chart	Route insp	ection
	Ch 8 – Critical path analysis – recap plus 8.7 & 8.8.			Resource histogram Scheduling diagrams		
	Model a project by an activity network using a precedence table			Schedding diagrams		
	Use dummy activities Identify and calculate early and late event times in activity networks					
	Identify critical activities					
	Calculate the total float of an activity					
	Calculate and use Gantt (cascade) charts Construct resource histograms					
	Construct scheduling diagrams					
	Core Pure 2:	Topic tests completed for	Struggle with using the limiting value.		Before:	
	Ch 3 – Calculus	homework	Integrating with respect to wrong	Limits	From AS: Definite in	tograls
	Evaluate improper integrals where either the integrand is undefined at a value in the range of integration or the range of integration extends to infinity.		variable.	Undefined	From A Lev	_
	Understand and evaluate the mean value of a function.		Deleting polar equations to polar	Limiting value	Inverse fur	
	Integrate using partial fractions.		Relating polar equations to polar graphs.	Derivatives	Partial frac	tions
	Differentiate inverse trigonometric Functions. Be able to choose trigonometric substitutions to integrate associated functions.		8.54	Expansion		
Teacher 2	Extend to quadratic factors $ax^2 + c$ in the denominator.			Validity		
	Ch 4 – Volumes of revolution					
	Derive formulae for and calculate volumes of revolution.					
	Both $\pi \int y^2 dx$ and $\pi \int x^2 dy$ are required. Students should be able to find a volume of revolution given either Cartesian equations or parametric equations.				Before:	
	,,			Parametric and		coordinates
	Ch E Polar coordinates			Cartesian Equations of	Curve sket	ching Integration
	Ch 5 – Polar coordinates			the parabola and		

	Understand and use polar coordinates and be able to convert between polar and Cartesian Coordinates. Sketch curves with r given as a function of θ , including use of trigonometric functions. Find the area enclosed by a polar curve. The sketching of curves such as $r=p$ sec $(\alpha-\theta)$, $r=a$, $r=2a$ cos θ , $r=k\theta$, $r=a(1\pm\cos\theta)$, $r=a(3+2\cos\theta)$, $r=a\cos\theta$ and $r^2=a^2\cos2\theta$ may be set. The ability to find tangents parallel to, or at right angles to, the initial line is expected.			rectangular hyperbola Equations of tangents and normals to the above Initial line Area of a Sector	
Term 2 Teacher 1	Decision 1: Ch 7 - Simplex algorithm The Simplex algorithm and tableau for maximising and minimising problems with ≤ constraints. The two-stage Simplex and big-M methods. Problems will be restricted to those with a maximum of four variables (excluding slack variables) and four constraints, in addition to non-negativity conditions. Ch 6 – Linear programming recap	Topic tests completed for homework	Not fully setting out constraints. Computational errors Not laying work out clearly enough to follow the steps separately Combining 2 or more steps in one tableau Choosing wrong pivot	Simplex Constraint Tableau Pivot Slack variable Artificial variable	Before: Linear programming
Teacher 2	Core Pure 2: Ch 6 – Hyperbolics Understand the definitions of hyperbolic functions sinh x, cosh x and tanh x, including their domains and ranges, and be able to sketch their Graphs. Differentiate and integrate hyperbolic Functions. Understand and be able to use the definitions of the inverse hyperbolic functions and their domains and ranges. Derive and use the logarithmic forms of the inverse hyperbolic functions. Be able to choose substitutions to integrate associated functions. Ch 2 – recap of Series	Topic tests completed for homework	Errors often made with arcosh and arcsinh. Standard forms often not used. Using trig identities rather than hyperbolic identities. Integrating inverse trigonometry as trigonometry (not using correct formulae) Confusing the signs of hyperbolic functions (+ve/-ve in different quadrants).		Before: From AS: Trigonometry Exponential functions From A Level: Trigonometry
	Ch 1 – recap of Complex numbers				

	Ch 7 - Methods in differential equations	Y13 Internals –	Many students struggle to set up the	First Order Separating	Before:
	Find and use an integrating factor to solve differential equations of and recognise	full length Core	correct model for the differential	the variables	From A Level:
	when it is appropriate to do so.	Pure paper,			
<u>Term 3</u>	Find both general and particular solutions to differential Equations. Use differential equations in modelling in kinematics and in other contexts. Solve differential equations of form $y'' + ay' + by = 0$ where a and b are constants by using the auxiliary Equation. Solve differential equations of form $y'' + ay' + by = f(x)$ where a and b are constants by solving the homogeneous case and adding a particular integral to the complementary function (in cases where $f(x)$ is a polynomial, exponential or trigonometric function). Understand and use the relationship between the cases when the discriminant of the auxiliary equation is positive, zero and negative and the form of solution of the differential equation.	Decision paper (and AS Further Mechanics in class)	equation. Integrating with respect to the wrong variable	Second Order Integrating factor Auxiliary equation Complementary equation Particular solution Boundary conditions General solution Simple harmonic motion Coupled first order	Differentiation Integration
Teacher 1	The integrating factor of P(x)dx may be quoted without proof.				
	Ch 8 - Modelling with differential equations Solve the equation for simple harmonic motion $d^2x/dt^2 = -\omega^2x$ and relate the solution to the motion. Model damped oscillations using second order differential equations and interpret their solutions. Analyse and interpret models of situations with one independent variable and two dependent variables as a pair of coupled first order simultaneous equations and be able to solve them, for example predator-prey models. Damped harmonic motion, with resistance varying as the derivative of the displacement, is expected. Problems may be set on forced vibration.				Before: From AS: Vectors in 2D From A Level: Vectors in 3D
	Further mechanics 1:	Topic tests			Before:
	Ch 3 – Elastic Strings	completed for			From AS:
	Elastic strings and springs.	homework			Kinematics
	Hooke's law.				Vectors
	Energy stored in an elastic string or spring.				Vectors (Pure)
	Ch 4 – Elastic Collisions				Integration (Pure)
	Direct impact of elastic spheres.				From A Level:
	Newton's law of restitution. Loss of kinetic energy due to impact.				Further kinematics in 2D Resolving forces
Teacher 2	Successive direct impacts of spheres and/or a sphere with a smooth plane				Frictional forces
	surface.				Dynamics
	Problems using the work-energy principle involving kinetic energy, potential				Dynamics
	energy and elastic energy may be set.		Often misunderstandings about		
	Oblique impact of smooth elastic spheres and a smooth sphere with a fixed		oblique angles.		
	surface. Loss of kinetic energy due to impact.				
	Problems will only involve spheres with the same radius. Problems may be set in				
	vector form. The spheres may be modelled as particles.				
	5.2 Successive oblique impacts of a sphere with smooth plane surfaces.				

6 c. Maria and antidomic	
Revision and catch up	
Term 4	
Teacher 1	
Further mechanics 1: Exam papers Magnitude of velocity often	
Recap of Chapters 1, 2 and 4 set as incorrectly answered.	
homework and	
Revision and catch up a couple set as Equation of motion often incorrectly	
Teacher 2 practice papers set up.	
in exam	
conditions in Errors with natural length quite	
class common.	
D. W. and others	
Revision and catch up	
Term 5	
Teacher 1	
Revision and catch up	
Teacher 2	